Homework 6

- 1. **RSA Assumption (5+12+5).** Consider RSA encryption scheme with parameters $N = 21 = 3 \times 7$.
 - (a) Find $\varphi(N)$ and \mathbb{Z}_N^* . Solution:

(b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

Solution.

X	1	2	4	5	8	10	11	13	16	17	19	20
X^2												
X^4												

(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^* . Solution.

X	1	2	4	5	8	10	11	13	16	17	19	20
X^5												

- 2. Answer to the following questions (7+7+7+7):
 - (a) Compute the three least significant (decimal) digits of $1337011^{2046002}$ by hand. Solution.

(b) Is the following RSA signature scheme valid?(Justify your answer) (r||m) = 33333, σ = 66666, N = 87155, e = 65537 Here, m denotes the message, and r denotes the randomness used to sign m and σ denotes the signature. Moreover, (r||m) denotes the concatenation of r and m. The signature algorithm Sign(m) returns (r||m)^d mod N where d is the inverse of e modulo φ(N). The verification algorithm Ver(m, σ) returns ((r||m) == σ^e mod N).
(Write Note that 5 is a factor of N = 87155.)

(Hint: Note that 5 is a factor of N = 87155.) Solution.

(c) Remember that in RSA encryption and signature schemes, $N = p \times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can find the factorization of N i.e. you can find p and q. Solution. (d) Consider an encryption scheme where $Enc(m) := m^e \mod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $Dec(c) := c^d \mod N$ where d is the inverse of $e \mod \varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_1 and the encryption of m_2 , then you can find the encryption of $(m_1 \times m_2)^3$. Solution.

Collaborators :